
Commutative Algebra Atiyah-MacDonald

1 Chapter 3

1.1 Fractions

1. Exercise 1. Let S be a multiplicatively closed subset of a ring A and let M be a
finitely generated A-module. Prove that S−1M = 0 if and only if AnnM meets S.

Exercise 1 solution. We have AnnS−1M = S−1 AnnM by 3.14. Now S−1 AnnM is the
unit ideal in S−1A if and only if AnnM meets S, by 3.11(ii). Meanwhile, S−1M = 0
if and only if AnnS−1M is the unit ideal. This does it.

2. Exercise 2. Let a◁A, and let S = 1+a. Show that S−1a is contained in the Jacobson
radical of S−1A. Use this and the Nakayama lemma to give an alternative proof of
2.5, the claim that if M is a finitely generated A-module and aM = M , then there
exists x ≡ 1 mod a such that xM = 0.

Exercise 2 solution. Let a/s be an arbitrary element of S−1a. We have s = 1 + a′ for
a, a′ ∈ a, and so 1 + a/s = (1 + a′ + a)/(1 + a′), and this is clearly a unit in S−1A since
numerator and denominator are both in S. Thus 1 + a/s is a unit for all a/s ∈ S−1a,
and since this is an ideal it follows that 1+ (x)(a/s) is a unit for all x ∈ S−1A. Thus,
a/s is in the Jacobson radical, by 1.9. This proves that S−1a ⊂ JS−1A.

Now let M be finitely generated and let a ◁ A be such that aM = M . Let S =
1 + a as we’ve done here. Then S−1a is in the Jacobson radical of S−1A. But also,
S−1aS−1M = S−1M , because aM ⊃M . Also, S−1M is finitely generated over S−1A,
by the images of the generators of M under the map m ↦ m/1. So by Nakayama,
S−1M = 0. Then by problem 1, AnnM meets S. I.e., there exists x ∈ AnnM with
x ≡ 1 mod a. This does it.

Now for completeness, I note that as I have things set up, this proof of 2.5 is really
circular, because the proof of Nakayama that I recorded depends on 2.5. There is a
proof given by A and M that doesn’t, which I declined to write down at the time,
but here it is now. Let M be finitely generated and nonzero, and let x1, . . . , xn be a
minimal set of generators for M . If a is such that aM =M , then xn has the form

a1x1 + ⋅ ⋅ ⋅ + anxn

for a1, . . . , an ∈ a, so that

(1 − an)xn = a1x1 + ⋅ ⋅ ⋅ + an−1xn−1

If a ⊂ J, then 1 − an is a unit. This implies that xn ∈ ⟨x1, . . . , xn−1⟩, contradicting
minimality of the set of generators. This proves it.
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3. Exercise 3. Let A be a ring and let S,T be two different multiplicatively closed
subsets. Let U be the image of T under A→ S−1A. Show that (ST )−1A is isomorphic
to U−1(S−1A).

Exercise 3 solution. We have a map A
φÐ→ S−1A

ψÐ→ U−1(S−1A). Clearly everything in
ST ends up a unit under the composed map. Also, to be in the kernel of ψ you have
to annihilate an element of U ; thus if x is in the kernel of ψ ○ φ we have φ(x)u = 0
in S−1A, so that φ(xt) = 0 in S−1A for some t such that u = φ(t). But if φ(xt) = 0
in S−1A, then xt is annihilated by an element of s in A. So x is annihilated by
st ∈ ST . Thus ψ ○ φ(x) = 0 implies ∃st ∈ ST with stx = 0 in A. Lastly, everything
in S−1A has the from x/s = φ(x)φ(s)−1, so everything in U−1(S−1A) has the form
φ(x)φ(s)−1/u = φ(x)φ(s)−1/φ(t) = ψ ○φ(x)ψ ○φ(s)−1ψ ○φ(t)−1 = ψ ○φ(x)ψ ○φ(st)−1.
Thus the homomorphism ψ ○ φ and the ring U−1(S−1A) satisfy the conditions that
uniquely characterize the ring (ST )−1A and its canonical homomorphism from A. So
they are isomorphic.

4. Exercise 4. Let f ∶ A→ B be a homomorphism of rings, let S ⊂ A be a multiplicative
submonoid of A, and let T = f(S). Show that S−1B and T−1B are isomorphic as
S−1A-modules.

Exercise 4 solution. Okay T−1B is the localization of B as a ring, while S−1B is
the localization of B as an A-module. Thus elements of T −1B look like b/f(s) while
elements of S−1B look like b/s. The former are multiplied by elements of S−1A by
(a/s)(b/f(s′)) = f(a)b/f(ss′), while the latter by (a/s)(b/s′) = f(a)b/ss′.

There is an evident map φ ∶ S−1B → T−1B defined by b/s ↦ b/f(s). The fact that f
is a ring homomorphism makes this an S−1A-module homomorphism:

φ((a/s)(b/s′)) = φ(f(a)b/ss′)
= f(a)b/f(s)f(s′)
= (a/s)(b/f(s′)) = (a/s)φ(b/s′)

and

φ(b/s + b′/s′) = φ((f(s′)b + f(s)b′)/ss′)
= (f(s′)b + f(s)b′)/f(s)f(s′)
= b/f(s) + b′/f(s′)
= φ(b/s) + φ(b/s′)

We need to show it is an isomorphism. It is obviously surjective, since S surjects onto
T = f(S) by definition. Meanwhile, we have b/f(s) = 0/1 if b is annihilated by some
element f(t) of T . But this is what it means for b (as an element of the A-module
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B) to be eliminated by t; so b/f(s) = 0 in T−1B implies b/s = 0 in S−1B. So the map
is injective too.

I have something I’d like to add, for my later thinking. S−1B gets the structure
of an S−1A-algebra (not just a module) by defining multiplication in the obvious
way by (b/s)(b′/s′) = bb′/ss′. On this definition, φ ∶ S−1B → T−1B is actually an
S−1A-algebra isomorphism, not just a module isomorphism, since φ(b/s)φ(b′/s′) =
(b/f(s))(b′/f(s′)) = bb′/f(s)f(s′) = bb′/f(ss′) = φ(bb′/ss′) = φ((b/s)(b′/s′)).

5. Exercise 8(i)-(iii). Suppose S,T ⊂ A are multiplicatively closed and S ⊂ T , so there
is a mapping φ ∶ S−1A→ T−1A mapping a/s↦ a/s. Show the following conditions on
S,T, φ are equivalent:

(a) φ bijective.

(b) ∀t ∈ T , t/1 is a unit in S−1A.

(c) ∀t ∈ T , ∃x ∈ A s.t. xt ∈ S.

Exercise 8(i)-(iii) solution. It is clear φ is a ring homomorphism.

(a)⇒(b). It’s a bijection so an isomorphism, and t/1 is a unit in T−1A. Check.

(b)⇒(c). t/1 a unit in S−1A. Then ∃a/s such that at/s = 1/1. So ∃u ∈ S such that
uat = us. Take x = ua. Then xt = us ∈ S.

(c)⇒(a). We will first show φ is surjective. For all x/t ∈ T−1A, we need to show there
exists y/s ∈ S−1A with φ(y/s) = x/t. Now by assumption there is some z ∈ A with
zt ∈ S. Then let y = zx and s = zt. Clearly we have φ(y/s) = zx/zt = x/t in T−1A, so
φ is surjective.

Now we will show φ is injective. We must prove that if x/s = 0 in T−1A, it also = 0 in
S−1A. But if x/s = 0 in T−1A, there is a t ∈ T with tx = 0 in A. By assumption, there
is a y ∈ A with yt ∈ S. Then (yt)x = 0, which implies that x/s = 0 in S−1A. Thus φ
is injective.

1.2 Spec and presheaves

1. Exercise 20. Let f ∶ A → B be a ring homomorphism and f∗ ∶ SpecB → SpecA its
pullback. Show that

(a) f∗ is surjective if and only if every prime ideal of A is contracted.

(b) f∗ is injective if every prime ideal of B is extended.

Is the converse to (b) also true?
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Exercise 20 solution. (a) is an immediate consequence of proposition 3.16. To say f∗

is surjective is to say every prime ideal of A is contracted from a prime; it was shown
in 3.16 that a prime ideal is contracted from a prime if and only if it is contracted
period.

(b) To say f∗ is injective is to say that no two prime ideals of B contract to the
same ideal of A. If every prime ideal of B is extended, then every prime ideal is the
extension of its contraction (see ch. 1, proposition 1.17). This implies no two distinct
prime ideals can contract to the same ideal, or they would be equal to this ideal’s
extension and thus each other.

In the other direction, we can have an injective map f∗ without every prime of B
being extended, so the converse is false. For example, let A = k, a field, and let
B = k[x]/(x2), and let f be the obvious inclusion. Then the only prime ideal of B is
(x), because B is actually a local ring: a + bx ∈ B is a unit unless a = 0. So the map
f∗ is injective. However, (x) is not an extended ideal because its contraction to A is
(0), and this extends to (0).

2. Exercise 21.

(a) Let A be a ring, S a multiplicatively closed subset of A, and φ ∶ A → S−1A the
canonical homomorphism. Show that φ∗ ∶ Spec(S−1A) → SpecA is a homeo-
morphism to its image. Let X = SpecA and S−1X = imφ∗. In particular, show
that if f ∈ A, the image of SpecAf in X is the basic open set Xf defined in Ch.
1, ex. 17.

Exercise 21a solution. This is actually kind of obvious I think. We know from
proposition 3.11(iv) that φ∗ is a bijection onto its image. Since φ−1 respects
containment of ideals, and the topology on Spec is defined in terms of ideal
containment, this pretty much makes it a homeomorphism. I suppose we could
talk through this conclusion, since although J ⊃ I ⇒ φ−1(J) ⊃ φ−1I, J ⊅ I does
not imply φ−1(J) ⊅ φ−1(I).

We know φ∗ is continuous from Ch. 1 exercise 21. We need to check (φ∗)−1

is continuous. That is, we need to check φ pushes closed sets of prime ideals
in im f∗ forward to closed sets of prime ideals in SpecS−1A. im f∗ is precisely
the set of contracted prime ideals in A. A closed subset is the set of contracted
prime ideals that contain some ideal a of A. A contracted prime ideal p◁ A
pushes forward to S−1p, which is also prime. (Quick proof: A/p is a domain
and p does not meet S ⇒ S−1(A/p) = (S−1A/S−1p) is contained in Frac(A/p)
and is thus a domain.) So what needs to be shown is that p contains a and
doesn’t meet S if and only if S−1p contains S−1a and isn’t the unit ideal. But
this is clear: if p contains a, then S−1p contains S−1a; this much is obvious.
Conversely, if S−1p contains S−1a, then for all a/s ∈ S−1a we have p/s′ ∈ S−1p
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such that p/s′ = a/s, so that sp − s′a is annihilated by t ∈ S: tsp = ts′a. Then
ts′a ∈ p, so that either t, s′, or a is in p since the latter is prime. Since we are
presuming that S does not meet p, it must be a ∈ p. This shows a ⊂ p and proves
that φ∗ is a homeomorphism to its image. This justifies the use of the symbol
S−1X to refer to this image in X.

In particular, if f ∈ A, S = {1, f, f2, . . .}, then SpecS−1A is the set of all prime
ideals that do not contain f or any power. Because they are prime, these are
exactly the ones that don’t contain f . This is Xf defined in Ch. 1, ex. 17.
Davesh Maulik (or Mumford I think!) would call it D(f).

(b) Let f ∶ A→ B be a ring homomorphism and let Y = SpecB. Let f∗ ∶ Y →X be
the mapping associated with f . Identifying SpecS−1A with its canonical image
S−1X in X, and similarly SpecS−1B with S−1Y , show that S−1f∗ ∶ SpecS−1B →
S−1A is the restriction of f∗ to S−1Y , and that S−1Y = (f∗)−1(S−1X).

Exercise 21b solution. This is just a statement about sets and no longer about
topology, since we are allowed to view S−1X as a subset of X by the last problem.
(For clarity of thinking I note that S−1B ≅ f(S)−1B as rings; see problem 4.)

What is S−1f∗? Well, what is S−1f? This is the map a/s ↦ f(a)/f(s). S−1f∗

is the way prime ideals pull back under this map. We need to show that a prime
ideal in S−1B pulls back to a prime ideal in S−1A if and only if the corresponding
ideal in B pulls back to the corresponding ideal in A under f . Say f(S)−1q pulls
back to S−1p. Then for all p/s ∈ S−1p, there must exist ... too many details.
Take a Yash-like birds-eye view:

Consider the diagram

A
fÐ→ B

↓π ↓π′

S−1A
S−1fÐÐÐ→ S−1B

The pullbacks are

SpecA
f∗←Ð SpecB

∪ ∪
SpecS−1A

S−1f∗←ÐÐÐ SpecS−1B

The statement that S−1f∗ = f∗∣SpecS−1B is just the statement that the bottom
diagram commutes. This is immediate from the functoriality of the pullback,
which we proved in Ch. 1, problem 21! I suppose good form would be to check
that the top diagram commutes, but this is actually clear from the definitions
of the maps.
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Meanwhile, once we have this, the statement that (f∗)−1(S−1X) = S−1Y is the
statement that the only prime ideals in B that pull back to prime ideals of A
not meeting S are those that don’t meet f(S). In other words, that if a prime
ideal of B meets f(S), its pullback in A meets S. This is totally obvious.

(c) Let a◁A and let b = ae. Let f̄ ∶ A/a → B/b. If SpecA/a is identified with its
canonical image V (a) in X and same for B,b, show that f̄∗ is the restriction of
f∗ to V (b).

Exercise 21c solution. This time, the diagram is

A
fÐ→ B

↓ ↓
A/a f̄Ð→ B/b

The pullback diagram is

SpecA
f∗←Ð SpecB

∪ ∪
V (a) f̄∗←Ð V (b)

and again, the result follows from the functoriality of the pullback.

For use in the next problem: do we also have (f̄∗)−1(V (a)) = V (b)? In other
words, if a prime ideal pulls back to one containing a, does it have to contain
b? Yes; NOT DONE HERE.

(d) Let p be a prime ideal of A. Take S = A∖p and reduce S−1A mod S−1p. Deduce
that (f∗)−1(p) is naturally homeomorphic to Spec(Bp/ppBp) = Spec(k(p)⊗AB),
where k(p) is the residue field of the local ring Ap. Spec(k(p) ⊗A B) is called
the fiber of f∗ over p.

Exercise 21d solution. This combines the last two problems. The diagram looks
like

A
fÐ→ B

↓ ↓
Ap

fpÐ→ Bp

↓ ↓

k(p)
f̄pÐ→ Bp/ppBp
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By the above discussion, the pullback diagram is commutative:

SpecA
f∗←Ð SpecB

∪ ∪

SpecAp

f∗p←Ð SpecBp

∪ ∪

Speck(p)
f̄∗p←Ð Spec(Bp/ppBp)

k(p) has the lone prime ideal (0). Following this ideal up the left side and pulling
back across the top, we see that this is (f∗)−1(p) in SpecB. Pulling back across
the bottom, we see that it is Spec(Bp/ppBp) which is then embedded in SpecB
by the above discussion. So we conclude that these are homeomorphic. Let’s
also just check that

Bp/ppBp = k(p)⊗A B
to complete the argument. We have Bp = Ap⊗AB by proposition 3.5. Then, we
have

Bp/ppBp = Ap/pp ⊗Ap (Ap ⊗A B) = k(p)⊗Ap (Ap ⊗A B) = k(p)⊗A B

by exercise 2 of chapter 2. This finishes it!

3. Exercise 23. Let A be a ring, X = SpecA, and let U be a basis open for X, i.e.
U =D(f) for some f ∈ A.

(a) Show that A(U), defined as Af for U =D(f), doesn’t depend on f but only on
U !

Exercise 23a solution. Cool! Geometrically this is saying that the ring of regular
functions on the complement of a hypersurface doesn’t depend on the function
that was used to cut out the hypersurface. For example, Af and Af2 are the
same. (I remember in the case of varieties, it was actually a theorem, not a
definition, that the ring of regular functions on D(f) was k[X]f .)

Let’s see. Suppose f and g are such that a prime ideal contains f if and only if
it contains g. We want to say that Af and Ag are isomorphic.

The problem is custom-made for the universal property of localizations. If S is
a multiplicatively closed set in A and φ ∶ A → B is a homomorphism such that
φ(S) ⊂ B∗, then φ factors through S−1A. If furthermore, all elements of B have
the form φ(a)φ(s)−1 for some s ∈ S, then the map from S−1A is surjective, and
if the only stuff in the kernel of φ is stuff in A that’s annihilated by some s ∈ S,
then S−1A ≅ B. So with f, g as above, first we need to check all powers of f
map to units in Ag. What is the map?
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The map is the canonical homomorphism φ ∶ A → Ag. The image of f is f/1.
We need to check this is a unit of Ag. (It will follow immediately that all its
powers are.)

We know f, g ∈ A are contained in the same prime ideals. This implies immedi-
ately that (f), (g) have the same radical. Then in particular g ∈

√
(f), so that

gk = af for some k ∈ N, a ∈ A. It follows that (f/1)(a/gk) = 1/1 in Ag and thus
that f/1 is a unit.

Secondly, we need to check that everything in Ag has the form φ(b)φ(fk)−1 for

b ∈ A,k ∈ N∪{0}. The key is that because f ∈
√

(g), we have fk
′ = a′g in A, and

therefore φ(a′)φ(fk′)−1 = (a′/1)(a/gk)k′ . This is

a′ak
′

gkk′

I claim this equals 1/g. Indeed, this is true iff the equation

a′ak
′

g = gkk′

holds in A. But a′g = fk′ , and gk = af so this simplifies to

fk
′

ak
′ = (af)k′

and this is clear. Therefore 1/g has the requisite form. As all elements a/1 have
the requisite form (they = φ(a)φ(1)−1), and these with 1/g generate Ag, this
shows that all its elements have the requisite form.

Last, we need to check that φ(b) = 0 only if b was already zero in Af , i.e. b
is annihilated by some power of f . Indeed, if φ(b) = 0 then this means b is
annihilated by some power of g, say m. But then (a′g)mb = (fk′)mb = 0 too,
which means b was already annihilated by a power of f .

This shows that Af ≅ Ag. Thus A(U) depends only on U = D(f) and not the
representative f ∈ A that “cuts out its complement.”

(b) Show that if U,U ′ are two basis opens with U = D(f), U ′ = D(g) and U ′ ⊂ U ,
there exists a “restriction homomorphism” A(U) → A(U ′) that only depends
on U,U ′ and not on f, g.

Exercise 23b solution. U ′ ⊂ U means that the set of prime ideals not containing
g is inside the set not containing f . Taking complements in X, V (f) ⊂ V (g):
every prime containing f contains g. This statement is equivalent to g ∈

√
(f):

for another way to say it is that g is in the intersection of the primes containing f .
Thus ∃k ∈ N, a ∈ A such that gk = af . Now define A(U) = Af → A(U ′) = Ag by
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sending 1/f ↦ a/gk (and the rest in the obvious way: for b ∈ A send b/1 ↦ b/1;
etc.). This is a homomorphism because (1/1) = (f/1)(1/f) ↦ (f/1)(a/gk) =
af/gk = 1/1.

We need to show this homomorphism does not depend on f, g (or for that
matter on k, a) but only on U,U ′. Thus, let f, f̂ be any elements of A such that
U =D(f) =D(f̂). Let g, ĝ be any elements of A such that U ′ =D(g) =D(ĝ). By
the arguments above, we have isomorphisms Af ↔ Af̂ and Ag ↔ Aĝ constructed

as in part (a), and homomorphisms Af → Ag and Af̂ → Aĝ constructed as in
the last paragraph. What we have to do is show that the diagram

Af ↔ Af̂
↓ ↓
Ag ↔ Aĝ

always commutes. This will show that the down arrows are the same up to
conjugation by the across arrows.

I believe that this result will follow from the desired result of part (d), that the
homomorphisms constructed here compose properly. For if they do, then the
compositions around the square above are equal to the diagonals and thus don’t
depend on the way around the square. Let us do part (c) then.

(c) Show that if U = U ′, this homomorphism is the identity.

Exercise 23c solution. Actually, this follows from the way I did part (a), because
I constructed the restriction homomorphism in that case, and showed it was an
isomorphism.

(d) Show that if U,U ′, U ′′ are basis opens with U ⊃ U ′ ⊃ U ′′, then

A(U) → A(U ′)
↘ ↓

A(U ′′)

commutes.

Okay, let U = D(f), U ′ = D(f ′), U ′′ = D(f ′′). From the inclusions U ⊃ U ′ ⊃ U ′′,
we have (taking complements) V (f) ⊂ V (f ′) ⊂ V (f ′′). Then all the primes
containing f also contain f ′, etc., so

√
(f) ⊃

√
(f ′) ⊃

√
(f ′′). There exists

a ∈ A,m ∈ N such that (f ′′)m = af . There also exist b, b′ ∈ A and n,n′ ∈ N so
that (f ′)n = bf and (f ′′)n′ = b′f ′. We get a map φ ∶ Af → Af ′′ by mapping
1/f ↦ a/(f ′′)m. We get maps ψ ∶ Af → Af ′ and ψ′ ∶ Af ′ → Af ′′ by 1/f ↦ b/(f ′)n
and 1/f ′ ↦ b′/(f ′′)n′ . Our goal is to show φ = ψ′ ○ ψ.
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It is clear that the maps coincide on the image of A in Af , so the only thing to
check is that they do the same thing with 1/f . On ψ′ ○ ψ we have

1/f ↦ b/(f ′)n ↦ b(b′)n/(f ′′)nn′

thus what we have to show is that

a

(f ′′)m = b(b′)n
(f ′′)nn′

in Af ′′ , in other words that

a(f ′′)nn′ − b(b′)n(f ′′)m

is annihilated by some power of f ′′ in A. Actually, it is already zero in A: using
af = (f ′′)m, bf = (f ′)n, b′f ′ = (f ′′)n′ , we have

a(f ′′)nn′ − b(b′)n(f ′′)m = a(b′f ′)n − ab(b′)nf
= a(b′)n [(f ′)n − bf] = 0

This completes the proof!

(e) Let x = p ∈X. Show that
limÐ→
U∋x

A(U) ≅ Ap

Exercise 23d solution. Let’s use the universal property of direct limits. Let R
be any ring with a homomorphism from every A(U) with U ∋ x, i.e. U = D(f)
with f ∉ p, that commutes with the restriction maps defined above. In other
words, R has a map from every Af , f ∉ p, that commutes with the restrictions.
Then really what R has is a map from A such that for all f ∉ p, the image of f
is a unit. Therefore, R has a unique map from Ap (by the universal property of
localizations)! So Ap is the desired direct limit.

As A and M note, parts (a)-(d) show that the rings A(U) and restriction maps
constitute a presheaf on X (via the specification of a presheaf on the basis
opens), and part (e) shows the stalk of this presheaf at p = x is Ap.

4. Exercise 24. Show that the presheaf of the last exercise actually gives us a sheaf! In
particular, show that if (Ui)i∈I is a cover of X by basis opens and for each Ui there
is an si ∈ A(Ui) such that for every pair i, j the images of si and sj in A(Ui ∩Uj) are
equal, then there exists a unique s ∈ A = A(X) whose image in each A(Ui) is si. (I
note that this result can then be applied with X = each basis open U to show that
the presheaf has the sheaf property on basis opens, and this in turn implies that it
induces a unique sheaf on X.)
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Exercise 24 solution. Let Ui = D(fi). First, I claim Ui ∩ Uj = D(fifj). Indeed, a
prime ideal fails to contain fifj if and only if it fails to contain both fi and fj . (As
an ideal, if it contained either, it would contain the product, and because it is prime,
if it contains the product, it contains at least one of them.) Thus A(Ui ∩Uj) = Afifj .

Now, suppose that there are Ui = D(fi) that cover X = SpecA. Then ({fi}i) =
(1)◁A. This implies that there is a finite linear combination

1 =
m

∑
1

cifi

taking place in A. Not only that, but this means (f1, . . . , fm) = (1) and therefore
(fn1 , . . . , fnm) = (1) for any n, so there is a similar equation with fni replacing fi, with
the ci depending on n.

Now suppose we have si ∈ A(Ui) = Afi such that for each i, j, the images of si, sj in
A(Ui ∩Uj) = Afifj coincide. Represent each si as ai/fni

i . Then for each pair i, j, we
have

si∣ − sj ∣ =
aif

ni
j

(fifj)ni
−

ajf
nj

i

(fifj)nj
= 0

in Afifj . In other words, in A,

aif
nj

i f
ni+nj

j − ajfni+nj

i fni
j

is annihilated by some power of fifj .

For the finite list s1, . . . , sm, we may actually choose the representations si = ai/fni
to all have a uniform exponent in the denominator. Then, for 1 ≤ i, j ≤ m, this last
condition can be written more simply:

aif
n
j − ajfni

is annihilated by a power of fifj . Suppose it is (fifj)`. Then

aif
`
i f

`+n
j = ajf `j f `+ni

Since si = aif `i /f `+ni in Afi and sj = ajf `j /f `+nj , this shows, by replacing aif
`
i with

ai and ` + n with n, that for each of the finite number of pairs 1 ≤ i, j ≤ m, we can
choose the form si = ai/fni with big enough n so that we actually have fnj ai = fni aj .
Nothing is lost if we go even bigger, so we can choose these representations so that this
equation holds for every pair 1 ≤ i, j ≤ m. Then, with ci chosen to satisfy 1 = ∑ cifni
as above, let

s =
m

∑
1

ciai
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I claim that s restricts to si on each Ui, at least those with 1 ≤ i ≤ m. Indeed, we
have s∣Ui = s/1 ∈ Afi , and then

fni s =
m

∑
1

cjf
n
i aj =

m

∑
1

cjf
j
nai = ai

m

∑
1

cjf
j
n = ai

in A, and it follows that s/1 = ai/fni = si in Afi .

But beyond this, I also claim that the s given restricts to si on every Ui, not just
on those in the finite subcover U1, . . . , Um. I will approach this claim in an oblique
way. What I have shown above is two things: (1) given a cover X = ⋃Ui with each
Ui = D(fi), there is a finite subcover (i.e. X is compact, or quasicompact in the
parlance of algebraic geometry); and (2) given a finite cover X = ⋃m1 Ui, and some
si ∈ A(Ui) such that for all pairs i, j, si∣Ui∩Uj = sj ∣Ui∩Uj , there exists an s such that
s∣Ui = si for all i. I will now show that the s in (2) is unique with this property. This
will allow us to conclude that the s determined from s1, . . . , sm will also coincide with
all other si’s: indeed, for any specific i ∉ [m], both U1, . . . , Um and U1, . . . , Um, Ui are
finite covers of X by basis opens, and both s1, . . . , sm and also s1, . . . , sm, si have the
property of agreeing on overlaps. Thus by (2), they each determine an s ∈ A (say
s and s′) that restrict correctly. But then s′ restricts correctly on s’s U ’s, thus it
equals s by uniqueness. Thus s already agreed with si when restricted to Ui.

To show uniqueness in (2), because everything is contained in a system of rings so
that we can take differences, it is only necessary to show that if all the si’s are zero,
then any s ∈ A that restricts correctly is also zero. So, suppose we have an s ∈ A and
f1, . . . , fm ∈ A such that the image of s is zero in Afi for all i ∈ [m]. Let M = (s)◁A.
Then M is an A-module and it suffices to show it is zero as an A-module. But as we
have repeatedly seen, being zero is a very local property. M is zero if Mm is zero for
all maximals m◁A. But because the Ui =D(fi) = SpecAfi cover X, every maximal
of A extends to a maximal in Afi for some i. For given m, we know s’s image in the
Afi (such that D(fi) ∋ m) is zero; then it is zero in Am = (Afi)mfi

too, and then the
ideal it generates is also zero. Thus Mm = 0 for all m, and it follows M = 0, thus s = 0.
We are done.
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